
J .  Fluid Mech. (1977), vol. 82, part 1, p p .  1-16 

Printed in  Qreat Britain 
1 

Kelvin-Helmholtz waves in the ocean? 

By J. J. MAHONY 
Department of Earth and Planetary Sciences, The Johns 

Hopkins University, Baltimore, Maryland 212187 

(Received 14 April 1976) 

Large amplitude short waves confined near the crests of a swell have been observed 
when a stiff breeze was blowing against the swell. This would seem to imply the 
existence of both a wavelength-selective generating mechanism and a trapping 
mechanism, neither of which is to be expected of surface gravity waves of the observed 
length. It is suggested that there are significant changes in the dynamics of such waves 
if allowance is made for the dynamic coupling between wind and waves. For a Kelvin- 
Helmholtz model it is shown that energy transfer rates from the turbulent pressure 
fluctuations are greatly enhanced for subcritical conditions by the inclusion of the 
dynamic coupling. The group velocity of subcritical waves is profoundly affected, 
becoming infinite a t  the stability boundary. Thus subcritical waves could be trapped 
on a swell. An examination of the effects of wind shear suggest that Kelvin-Helmholtz 
type instability could still be present, although for stronger winds, particularly for 
rat'her longer waves. 

The energy and momentum fed from the mean wind, being trapped at crests of the 
swell, may contribute significantly to the attenuation of the swell. The profound wave 
dynamic effects of the coupling between the wind and the vswell for short gravity 
waves may be of significance in other oceanic phenomena, even when the Kelvin- 
Helmholtz type of instability is not present. 

1. Introduction 
On two separate occasions during a recent sea voyage the author observed a per- 

sistent and striking surface wave phenomenon. On both occasions there was a moderate 
to heavy swell running with a stiff opposing breeze. In a zone approximately sym- 
metrically located along each crest of the swell, quite steep waves with a wavelength 
of 0.1 m or somewhat larger could be seen. Over the remainder of the sea vsurface 
there was a remarkable absence of surface wave activity, apart from the swell itself, 
and the surface appeared smooth apart from having patches of residual foam. This 
foam originated from the breaking of the short waves grouped near the crests of the 
swell. Although there was considerable irregularity associated with the breaking of 
short waves the overall impression was of a regular pattern of short waves with their 
crests roughly parallel to the crests of the swell. Over a period of some hours, while 
the phenomenon persisted, there was a considerable abatement of the swell. I n  view 
of the energetic irreversible action occurring near each crest of the swell it is quite 
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possible that the phenomenon described played an important role in attenuating the 
swell. 

The comparative absence of short waves over most of the surface, together with the 
occurrence of zones of fairly regular intense short-wave activity, suggests that there 
are two actions for which an explanation is desirable. The first such action is a selective 
mechanism which confines t,he generation of waves by the wind to a relatively small 
band of wavenumbers. Second, there would appear to be acting some trapping 
mechanism which collects these waves near the crests of the swell. But if the local 
dynamics of these 0.lm waves are those of surface gravity waves, as one would 
naturally expect, neither of these actions would appear to be possible. A stiff breeze 
would not be expected to generate selectively waves of this length but rather a broader 
spectrum centred on a somewhat larger wavelength. Even more striking is the fact 
that the group velocity of gravity waves of this length is an order of magnitude smaller 
than the velocity of the swell. One would therefore expect that the swell would sweep 
past these shorter waves. Further, the short waves are too long to feel the thin vortical 
film which can affect capillary waves as discussed by Phillips & Banner (1974). 

One can only conclude that the local wave dynamics of these 0.1 m waves, under 
the conditions of the observations, are not those of surface gravity waves. Thus, 
apart from any interest in explaining the phenomenon itself, it  would appear to be 
worth while to look more closely a t  the dynamics of short surface gravity waves 
in the presence of wind. The only physical action, of which the author could think, 
which could possibly produce such dramatic changes from the standard theory of 
surface gravity waves is the dynamic pressure variations induced in the air by the 
movement of the water surface. For waves of this length, the dynamic coupling 
between wind and waves will depend on the wind profile, which is likely to be modified 
by the presence of the swell. It seemed more appropriate as a first attempt to examine 
possible dynamic coupling between waves and wind to use a mathematically simpler, 
if less realistic, model. Thus in $ 5  2 and 3 the modification of the local wave dynamics 
is investigated in the absence of wind shear. Of course, such a potential-flow model 
leads to the well-known Kelvin-Helmholtz theory, which is described in Lamb (1953). 
Such a model surely overestimates the possibility of Kelvin-Helmholtz instability. 
Nevertheless it is used in this paper for an initial investigation of a possible mechanism 
for the phenomenon observed by the author. The mathematical properties of a more 
realistic model would appear to be qualitatively similar. 

Even allowing for the possible overestimate it is shown in 5 2 that it  is not implausible 
that Kelvin-Helmholtz instability occurs in the 0.1 m wavelength range. Moreover, 
near the stability boundary there is a major change in the behaviour of the group 
velocity which is not confined to a potential-flow model. Thus the inclusion of dynamic 
coupling with the wind leads to two features of local wave dynamics which are essential 
to explain the observed phenomenon. 

In  § 3 it is shown that there is a further feature of the model behaviour which may be 
of significance. It is shown that near, but below the stability boundary, the Phillips 
(1957) mechanism of energy transfer from turbulence is greatly enhanced. This 
mechanism, or rather the version associated with a more realistic wind shear model, 
could be significant in the transfer of energy to the very short surface waves: a process 
that appears to be poorly understood. 

In  5 4 the model is extended to allow for the presence of the swell. With wind and 
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swell opposed the possibility arises that there will be a band of gravity wavenumbers 
which are unstable only near the crests of the swell and everywhere else are stable. 
In  the troughs the energy is fed into these wavenumbers from the turbulence but 
because a relatively empty part of the turbulent pressure spectrum is involved the 
transfer rate is small. As the swell advances on these waves they come close to the 
stability boundary so their growth rate increases dramatically as does their group 
velocity. One wave family is trapped on the leading face of the swell but the other is 
swept onto the crest, where it gains energy directly from the wind and the rapid 
growth continues as it moves over the crest. It is shown that these waves are trapped 
on the rear face of the swell close to the point where they become stable again. If 
breaking of these waves occurs in this zone the resulting confused surface is likely 
to trap any shorter waves which have been generated. Thus since all the short,er 
waves are trapped near the crest, wave generation has to recommence in the trough 
below the station where trapping has occurred. The qualitative features of this model 
are thus completely consistent with the observations. 

2. Kelvin-Helmholtz instability 
The derivation of the dispersion relation for small amplitude waves on the interface 

between two fluids moving parallel to the interface with uniform speeds is well known: 
see, for example, Lamb (1953, p. 373). If the velocity in the upper, lighter fluid is 
U' and that in the lower fluid is U then the natural angular frequencies w of interfacial 
waves with wavenumber vector k are given by 

w = (1 +A)-' {(U + AU') . k & [( 1 - A2) gk + Tk3p-1- A((U' - U).  k)']t}. (1) 

Here T is the surface tension, g is the acceleration due to gravity, p is the density of 
the lower fluid and A is the ratio of the densities of the upper and lower fluids. For 
air and water A has a value around 1.2 x 10-3 and hence it is reasonable to neglect 
many of the terms in (1). Throughout the remainder of the paper the dispersion 
relation will be taken to be of the form 

w = U . k +  [gk+Tk3p-l-A{(U'-U).k}2]*. (2) 

Such an approximation produces small errors in the parameters at which significant 
physical changes occur but leaves all basic phenomena well described. In  the sub- 
sequent analysis some terms become extremely important because they involve the 
reciprocal of the difference of two nearly equal quantities. The author has checked 
that the above approximation does not invalidate the character of any of the sub- 
sequent analysis. In  (2) the only additional term from the standard theory of surface 
waves, {(U' - U) . kI2A, represents the effect of the dynamic pressure changes induced 
in the air by the movement of the interface. 

Complex values of w arise, and hence the plane surface becomes unstable, for wave- 
number vectors k such that 

A((U' - U) . k}2 2 qk-l+ 5"kp-l = { ~ ( k ) } ~ ,  

where c is the phase speed of gravity-capillary waves in the absence of wind. This 
phase speed has a minimum value a t  a wavenumber k, given by ki = pg/T, and the 

1-2 
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corresponding minimum wind speed W, for the occurrence of Kelvin-Helmholtz 
instability is given by 

For relative wind components W ,  defined by W = (U' - U ) .  k, greater than W, it can 
be shown that the range of wavenumbers for which Kelvin-Helmholtz instability can 
occur is given by 

( W/W,)2 - {( W/W0)4 - I}* 6 k/k,  6 ( W/W,)z + {( W/W,)4 - I}+. 

This range increases very rapidly with W/W,, so that, while the wavelength at the 
critical wind speed of 6-7ms-l is only 17mm, the largest unstable wavelength has 
increased to 0.14m at a relative wind component of 13-4ms-l. For a relative wind 
component of 20 m s-l, representative of strong but not excessive winds, the maximum 
wavelength is 0-33m. In extreme storm conditions the instability could extend to 
waves almost one metre in length. It is apparent that for the stronger winds Kelvin- 
Helmholtz instability extends well into the gravity-wave range. The above results 
also indicate a quite strong angular dependence of the effect because for wavenumber 
vectors not aligned with the relative wind the ratio W/W, is reduced and the longer 
wavelengths are not unstable. 

W, = A-*c(k,). 

It is also of interest to note how large the growth rates y(k), given by 

y ( k )  = k, {( W/Wo)z (k/k0)' - W E o )  - t (k/k0)3}+,  (3) 

can be. If W/W, is as much as 2 ,  then a t  a wavenumber k,(W,/ W ) 2 ,  which is well inside 
the gravity-wave range, 

Y ( k )  M c(k0) kOlJ2. 

This gives as a representative e-folding time, for gravity waves in moderately strong 
winds, the value 0-03 s. In  the capillary wavenumber range the growth rates are very 
much larger again but in view of the fact that a potential-theory model is entirely 
inadequate for such waves this is probably irrelevant under, say, severe storm 
conditions. 

Hereafter attention will be confined to wavelengths in the gravity-wave range, for 
which it is reasonable to neglect surface tension. This is done for analytic convenience 
and does not affect the qualitative conclusions reached. But it is not only in the intro- 
duction of an instability that the dynamic coupling has important effects on the 
short-wave dynamics. For wavenumbers outside the instability band, but not too 
far divorced from it, there is a most significant modification of the dispersion relation. 
One quite dramatic effect appears in the group velocity and a second will be taken 
up in the next section. The group velocity is given by 

V, w = U It: ${gk - 2AWk(U' - U)} {gk - AW2k2]-t 

when gk > AW2k2. If one confines attention to the case, suggested above as being 
of the most interest, when k is parallel to the relative wind, the discussion becomes a 
little easier. For wavenumbers such that A W2k/g is small the group velocity relative to 
the h i d  is little affected and is equal to half the phase velocity. When A W2k/g has 
grown to a half, the group velocity relative to the fluid vanishes. For larger values the 
group velocity changes rapidly with wavenumber, or relative wind speed, and becomes 
unbounded at  the stability boundary. The fact that short waves can have group 
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velocities large in comparison with their phase velocities opens up the possibility bhat 
they could be trapped on the very much longer waves of a swell. This effect, very much 
localized in wavenumber space, could thus be of considerable physical importance. 

3. Energy transfer to surface waves 
In  this section two quite distinct mechanisms of energy transfer into water-wave 

motion will be investigated for waves for which dynamic coupling could be important. 
It will be assumed that the motion of both air and water due to the movement of the 
interface can be calculated using potential theory. Nevertheless it will be assumed 
that the otherwise uniform wind carries turbulent pressure fluctuations which, acting 
on the interface, initiate the surface movement. The model is thus an extension of 
the one proposed by Phillips (1957). Thus a solution is sought in terms of a surface 
displacement 

5 = A ( k ,  t )  eikeX, 
a velocity potential 

in the air and a velocity potential 

9‘ = E ( k ,  t )  eik.r-kz 

9 = B(k,  t )  eik.x+kz 

in the water. In  the air it is assumed that the pressure is the sum of the pressure 
calculated from 9’) using Bernoulli’s principle, and a turbulent pressure component 
pp(k,  t )  exp ( i k .  x), p being the density of water. In  the water it is assumed that there 
is no turbulent pressure component. The model thus ignores the wind shear necessary 
for the maintenance of the turbulence and any coupling between the surface-generated 
pressure field and the turbulence. 

The functions A ,  B and B’ can be determined in principle from the interface 
conditions. The two kinematic conditions yield 

and 
{a/at + ik.  U’} A = - kB’ 

{a/at+ik.U}A = kB 

while the pressure condition yields 

{apt + i k .  U} B +  gA = p + A[{a/at + i k .  U’} B‘ +gA].  

Elimination of B and B’ from these three equations, together with the use of the 
approximation A small in the manner of the derivation of (2) from ( I ) ,  yields 

(a/at+ik.U)2A +{gk--A[(U’-U).kl2)A = kp (4) 

for the equation governing the surface response. The subsequent calculations could 
be made without using A small but with no essential change. It is now convenient 
to consider quite separately the cases when the wavenumber vector k is stable or 
unstable. 

Consider first the case of unstable wavenumbers. Referred to axes moving with the 
water (4) becomes 

a2A/at2 -y2A = kp’(k, t ) ,  (5) 
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where p' is the turbulent pressure Fourier component relative to these moving axes. 
Now the turbulent pressure fluctuations are most highly correlated for point,s moving 
with the wind speed, i.e. U' - U relative to these new axes. This implies that the time 
scale associated with the fluctuations of p' is {(U' - U) . k}-l while that associated 
with the growth by Kelvin-Helmholtz instability is larger by a factor of at least 
A-4, which is about 35. The solution of the differential equation ( 5 )  satisfying zero 
initial conditions is 

A = ky-l p ' (k ,  s) sinh y(t  - 8 )  ds l o A  
and the portion which is growing in time is given by 

A+ = k(2y)-l e y t  p ' (k ,  s) e-ysds. j: 
The estimation of this term causes considerable difficulty because of the different 
orders of the two time scales, noted above, and the fact that p' has zero mean. 

One can note that A+ satisfies the differential equation 

aA+/at - yA+ = k(2y)-'p', 

and this admits an iterated solution 
m 

A+ = k(27)-' 2 ynP+l ) (p ' ) ,  
n= 0 

where I is the integral operator defined by 

I@')  = p ' (k , s )ds .  

Because p' has zero mean I (p ' )  does not grow with t but as I (p ' )  has non-zero mean 
12(p') will eventually grow as t ) ,  a standard result for a random walk. Hence In+2(p') 
will behave as tn+4 once the trend has been established with f2. Thus one can expect 
exponential growth to occur once some trend has been established by the early-stage 
pressure fluctuations. Subsequent turbulent pressure fluctuations contribute to A to 
a much lesser ext,ent and hence the eventual response A+ is in fact given by the 
homogeneous equation 

l: 

8 A . p  -?A+ = 0 

together with an initial condition determined by the feed from the early stages of 
the pressure fluctuations. Once the instability has been initiated the turbulence is no 
longer the source of energy for the growth of the waves. An energy calculation shows 
that the surface wave energy is equal to the kinetic energy of the wind in the zone 
which is, on average, screened by the surface undulations. This clearly implies that 
for the unstable wavenumbers the surface waves are fed from the mean wind. The 
turbulence merely initiates the instability and thereafter has no role to play in their 
energy supply. It may also be noted that the turbulence is not a particularly efficient 
initiator and there is a delay before the growth is likely to start. As will be shown 
later, it  is likely that another action will provide the initiation. 

For the stable wavenumbers it is convenient to recognize that the surface response 
is likely to be largely stochastic but that there may be a slow rate of change in the 



Kelvin-Helmholtz waves in the ocean 7 

level of that response due to energy transfer of the type considered by Phillips (1067). 
Thus one seeks to describe the function by a representation 

A(k, t )  = j B(k, w ,  t )  e-iwtdw. 
- W  

Here the time dependence in 2 is used to describe a slow rate of change in the general 
level and is thus not to be included in any statistical averaging process. This distinction 
in roles implies that IaA/atI < lwAl and suggests using approximations in which 
w-'a/at is regarded as a 'small operator'. Thus when the representation (6) is sub- 
stituted in (4) and second-order terms in the slow trend are ignored the differential 
equation 

2i(U. k - w )  aA/at + {gk - A[(U' - U) . k]2 - (w - U. k)2} A = kj5(k, w )  (7) 

is obtained. Here jj is defined by 

p(k, t )  = /;mjj(k,w)eiWtdw 

since one is not concerned with changes in the level of the turbulent pressure fluctua- 
tions. The solution of the differential equation with zero initial value is 

A = - kjj( 1 - e-*&) [2a(w - U.  k)]-l, 
where 

The mean-square expectation (AA*) is given by 

g = +{gk-A [(U' -U).  kI2- ( W -  U. k)2} (W -U.  k)-'. 

where 

= (4n)-1k2jym II(k,w)(r-2(w-U.k)-2(1 -cosa t )dw,  

II(k,w) = $(k,W)jj*(k,w). 

Thus the rate of increase of the mean-square expectation, which is closely related to 
the energy density in the wavenumber spectrum, is given by 

d 
(AA*) = (477)-lk2 II(k, w )  (w - U. k)-2cr1 sin at do. 

The pole at w = U . k is not of concern because there g is infinite and, while the inte- 
grand is unbounded, the neighbourhood of the point contributes negligibly to the 
integral. Now t has been included, without any scale change, to  represent changes 
taking place on a time scale large in comparison with w-1. Thus it is essentially the 
asymptotic value for large values o f t  which is of interest. The Riemann-Lebesgue 
lemma and stationary-phase estimates show that most of the range of integration 
does not contribute significantly for large values of t .  However the neighbourhoods 
of those values of w for which (r = 0 will contribute non-vanishing terms in the limit 
t-too. There are two such values w :  

w = U.k+{gk-A[(U'-U).kl2)4 = U.k+Q(k) ,  

corresponding to the natural frequencies of interface waves with the wavenumber 
vector k. It is of interest to note that if k lies in the domain of Kelvin-Helmholtz 



8 J .  J .  Mahony 

instability there are no such values of w and there is no energy feed from the turbulence 
within the accuracy of the approximations made. This is in accord with the conclusion 
reached earlier that it is the mean flow, and not the turbulence, which feeds the 
growth of that instability. For a stable wavenumber a routine calculation yields 

d sin s a (AA *) = (4n)-lk2 l-mm - ds {gk - A[(U’ - U) . kI2}-l 
S 

x {II(k,U.k- Q(k) + n(k,U.  k+Q(k))}. ( 8 )  

This is essentially an alternative derivation of Phillips’ (1957) result for surface waves 
allowing for the modification of the dispersion relation due to coupling with the wind. 
The result applies only for those wavenumber vectors for which {gk - A[(U’ - U) . kI2} 
is positive and hence the energy transfer is always from the turbulence to the waves. 
But the most striking feature of the result is the fact that, for wavenumbers close 
to the stability boundary, there is a greatly increased response because 

(gk-A[(U’-U). kI2} 

will be small. It must be borne in mind that II(k, w )  has its maximum for w = U’. k 
and decays away from that value, so that its level in the neighbourhood of U.  k is 
likely to be rather small. The author knows of no way to obtain a reasonable estimate 
of this term, which would involve a spatial and temporal Fourier analysis of the tur- 
bulent pressure field over the ocean. But for a narrow band of wavenumbers close to 
the stability boundary there may be significant energy transfer. Certainly there 
is the possibility of a wavelength-selective transfer mechanism, which is not possible 
without the inclusion of the dynamic coupling. One may also comment that the 
smaller the value of II(k,U. k) the narrower will be the band of wavenumbers for 
which the enhanced growth rate will be significant. Further, it  would appear that there 
is no reason why a qualitatively similar analysis should not apply near the stability 
boundary for some other systems. In particular one wouId expect that if the effects 
of wind shear were included y2 in (5) would be replaced by the term deriving from the 
modified dispersion relation and only algebraic details would be changed. 

It may be of interest to note that the unbounded energy transfer rate is not an 
integrable function of k ,  so that the actual singularity at  the critical boundary should 
not be taken too seriously. The above theory assumes that the turbulent pressure 
spectrum is given and is unaffected by any energy transfer to the surface waves. It 
of course cannot be true that the turbulent spectrum is unaffected when large energy 
transfers can occur in a limited wavenumber range. There would appear to be little 
chance of making theoretical predictions which include the effect of energy transfer 
to the waves on the turbulence itself. Nevertheless, as will be seen later the effect 
of the swell may be such as to make such calculations less necessary. 

4. Short waves on a swell 
The previous two sections have been concerned with the local dynamics and genera- 

tion of short waves under uniform conditions. When a swell is present both U’ and U 
will vary in both space and time and in this section the question of the cumulative 
effect of variation of local conditions due to the presence of a swell will be investigated. 
The potential-theory model will still be used. 
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The presence of a swell produces a number of effects which will modify the local 
dynamics. The relative wind velocity U'-U will vary with position relative to the 
swell crests and hence on length and time scales which are large in comparison with 
those of the short waves in the neighbourhood of the stability boundary. Further, 
the vertical acceleration of the swell provides a similar slow variation of the effective 
acceleration due to gravity. Thus a given wavenumber vector may be stable on one 
part of the swell and unstable on another part. In  addition, there are convergence- 
divergence effects associated with the swell which will modify the propagation of the 
short waves. All these features must be included in the calculations. Given the in- 
adequacies of a potential-flow model and the argument that the largest overall effect 
is most likely to occur when the individual effects are all aligned, only a one-dimen- 
sional model will be investigated here. Further, it  will be assumed, in the sign con- 
ventions adopted, that the wind and swell are opposed. 

A routine calculation shows that the surface velocity, correct to first order in the 
surface slope, produced by a wind of speed W blowing over a moving surface 

is given by 
U' = W + a ( V +  W )  COSK(X+ Vt), 

where a, equal to Ka, is the maximum slope of the surface due to the swell. Here W 
and V are both positive for opposing wind and swell. Similarly, the water velocity 
due to the swell is given by 

so that the relative wind is given by 

y = u cos K ( z  + V t )  

u = -aVcosK(x+ V t ) ,  

U ' - U  = W + ~ ( ~ V + W ) C O S K ( X + V ~ ) .  

Except in storm conditions, the swell velocity is likely to be of the c d e r  of two or 
three times the wind speed, so that there are considerable variations in the relative 
wind speed between the crests and troughs. The extent of these variations depends on 
the swell slope but heavy swells will have remarkably large variations. For opposing 
wind and swell the relative wind is greatest a t  the crests and least at  the troughs. 
This variation is reversed when the wind and swell are aligned. Further, the effective 
gravity is (1 - a )  g at  a crest and (1 + a) g at a trough. Thus for opposing wind and swell 
the variations act together to increase the wavelengths which can be unstable near 
the crests and to reduce the critical wavelength near the troughs. Thus the largest 
wavelengths which are anywhere unstable will be unstable near the crests and stable 
everywhere else. 

This is pointing in the direction of the phenomenon under investigation and it is 
of interest to substitute some hypothetical numerical values to see the size of the 
variations involved. These values are not to be taken as related to any specific observa- 
tion. For a slight swell of wavelength 400 m and amplitude 2 m the relative wind would 
vary from 8 m s-1 a t  the troughs to 12 m s-1 a t  the crests for a stiff breeze of 10 m s-l. 
The calculations of 3 2 show that waves of length 42 mm will be unstable at  a trough 
and waves of length 100 mm a t  a crest. For a swell amplitude of 4 m no wavelength is 
unstable a t  a trough and the critical value at a crest is about 0.16 m. It can be seen 
that when strong winds and heavy seas are involved there are quite dramatic shifts 
in the stability condition between trough and crest. When the wind and sea are 
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running in the same direction it is the troughs where the instability is most likely 
but the variations are not so marked. 

On the assumption that the Kelvin-Helmholtz type of instability will be reduced 
by the wind shear, attention will be confined to the larger wavelengths which are 
unstable only near the crests. At first the generation of these waves and their pro- 
pagation in the zone where they are stable are considered. These waves are short 
waves moving on the surface of the swell and it is not unreasonable to describe them 
by a linear theory of slowly varying waves. While there are a number of general 
discussions of such a theory, e.g. Bretherton & Garrett (1969), there are some special 
features in the present context. For short waves of say 0 - l m  on a swell of length 
400 m the ratio of the length scales K / k  is 2.5 x but the ratio of the time scales is 
Y K / (  Uk) and this is larger by a factor a-l. In  the phenomenon this paper sets out to 
explain the short waves are virtually absent in the troughs of the swell, so that it is 
perfectly reasonable to presume that the accumulation over one swell period is all 
that need be considered. As one is not contemplating swells with a larger than about 
0.03 this therefore suggests neglecting terms in the slowly varying dynamics which 
are either O(a2) or O(K/k) .  Neglecting terms O(a2) is the more dubious assumption 
on grounds of size, but it does not vary the physics and as the theory is not expected 
to be particularly accurate there seems little point in retaining such terms. Neglect 
of terms O ( K / k )  is much more justified on numerical grounds but involves the neglect 
of the group velocity. As the group velocity becomes large close to the stability 
boundary the present development will need modification there. It is important to 
recognize one feature of the present problem. In the velocity field U on which the waves 
are moving the acceleration U, rather than the velocity gradient U' is the major 
variation the short waves feel. This is a consequence of the above observation about 
slow length and time scales. Thus one should not expect the results of Bretherton & 
Garrett to apply. In  their discussion they specifically exclude the case where the rate 
of change of particle velocities in the base motion is not of a t  most second order in 
the short-wave amplitude. Thus a brief outline of the derivation of the appropriate 
equations will be given here. 

The appropriate linearized kinematic interface condition for the short waves on the 
swell is obtained from the standard condition 

Zt+aXZx  = QU on y = Z(x,t) 

by taking the Frechet derivative. Thus one obtains 

5 t + @ x 5 x + A Z x  = &+@yyC on 9 = 2- 

Here the lower case symbols denote the surface elevation 5 and velocity potential 4 
due to the short waves and the upper case symbols those due to the swell. Now QUv 5, 
being smaller than by a factor O(K/k) ,  can be neglected. Thus this boundary 
condition reduces to 

(a/at + Ua/az) 5 = q5u - # x  2, on y = 2, 

where U is the surface velocity due to the swell, and the corresponding condition for 
the air motion is 

on y = 2. 
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It can be shown that the pressure condition yields 

where pP is the turbulent pressure and advantage has been taken of the smallness of 
A. It is convenient to introduce a new co-ordinate 7, defined by 7 = y - Z ( x , t ) ,  so 
that the boundary conditions can be applied a t  a fixed value of one co-ordinate. The 
modified boundary conditions become 

to be satisfied on 7 = 0. Use has been made of the condition QV = 2,. In  the new 
co-ordinate system, when terms O(ct2) are neglected Laplace’s equation becomes 

(9) + #xx + 2#x& = 0, 

and solutions are sought in the form 

where 

If (9) is solved to determine # and #’ in terms of the values of B and B’ a t  7 = 0 and 
these values are then eliminated from the boundary conditions, it can be shown that 

6 = A(k,t,X)eikx, # = B(k,t,X,7)eiks, #’ = B‘(k,t ,X,7)eikZ, 

X = Kx.  

where X is an operator defined by 

.x = k-iKa/ax.  

In  view of the estimates obtained previously of the relative scales of time and 
length which are of interest it is reasonable to neglect all derivatives with respect to 
X occurring in (10). The parameters defining the effects of the swell are all functions 
of the single combination 

and it is convenient to use this fact to define a new independent variable 

c =  X + K V t  

where S is defined by this equation and go is some reference point on the swell. Then 
(10) may be simplified to 

a2B 
(1  + A )  3 + {(g + Ztt)  k - A( U’ - U ) 2  k2/(  1 + A)}B  = kp(k, t )  eis(f). 
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It may be observed that A and B differ only in terms of phase and that the gradient of 
this phase factor corresponds locally to changing to a frame of reference moving with 
the mean speed of the local surface wave modes when dynamic coupling is considered. 
In particular it implies that the expected wave energy may be computed directly 
from B. One may further note that, in the absence of turbulent pressure fluctuations 
for the calculation of the development of short waves on the swell, Green's formula 
would apply and that one would expect the short-wave amplitude to grow as the 
station where the stability boundary for the given value of k is approached. 

In  a theory of the limited attempted accuracy of this paper there is little point in 
retaining terms genuinely O(A)  and so the equation for B may be reduced to the form 

a2B/at2 +X(k ,  6) B M k p f ( k ,  t ,  5 )  

= kp(k,  t )  eis(L), (11) 

where x = ( 9 + Z , , ) k - A ( U ' - U ) 2 k 2 ,  

in line with previous approximations for the Kelvin-Helmholtz stability boundary. 
In  the present context only wavenumbers k which are such that x is negative at  crests, 
i.e. wavenumbers unstable a t  crests, are of interest. Further, it  will be assumed here, 
and explained later, that no short waves are left behind after the zone near the crest 
has swept by, as was observed. Thus it is convenient to choose a value of to ( > - 27r) 
such that B vanishes a t  this point. It will then suffice to explain the observed distribu- 
tion of waves and the use of the initial condition will be shown to be self-consistent 
if it can be established that B ( k ,  <,, + 2n) vanishes. 

Let El denote the smallest negative value of 5 at which x vanishes for the particular 
wavenumber. Then on the basis of the spatially homogeneous theory it is appropriate 
to seek solutions for 5, < 6 < 6, of the form 

B = /-mmB(k,o,lJe-iWtdw 

since [ may equally well be used as a slow time variable. A standard application of 
multiple-scale arguments leads to the equation 

- 2iwKV aB/a[+ (x - w2) B = k p f ( k ,  w, g), 

which may be solved. The pattern of calculation followed in Q 3 then leads to the 
result 

This result applies only if it is valid to calculate expected energies by integrating over 
time intervals small in comparison with the period of the swell. It is almost certain that 
such a method will not lead to particularly accurate results. But since little is known 
about the turbulent spectrum there would appear to be little point in seeking a better 
estimate. But is should be borne in mind that the effect of the stochastic processes is 
to  reduce the rate of energy transfer, so that the present approach would be likely 
to underestimate the wave energy. Thus the integrals in (12) will be estimated by 
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asymptotic methods. The integrand will be highly oscillatory save when r is close to 
5‘ and there 

= &(o-x/o). 
Thus 

(AA*)(k) cc k2/c‘X-1{rI(k, - U k - x i ) + r I ( k ,  - Uk+Xi}dk’ ,  

which may be readily interpreted as the integral of the homogeneous transfer rate as 
calculated from local conditions. 

Again it may be remarked that these integrals do not exist in the limit as 5, is 
approached. But in this case it is not only the inability of the turbulence to supply 
energy at  the required rate which will serve to invalidate the model. There will also 
be large spatial gradients developing. Hence the assumption that K-I is the appro- 
priate slow length scale will not be reasonable and a further modification would be 
necessary near &. Away from this zone, however, the calculations would seem appro- 
priate. But when x is not small one expects the local transfer rate to be extremely 
small because in such frequency ranges rI should be very small. In  these circumstances 
it is not hard to understand that there should be very little short-wave generation 
over the majority of the swell and that it is when one is relatively close to the critical 
zone for the given wavenumber k that quite rapid growth might be expected. 

However as this zone is approached the assumption that the ratio of length scales 
is O ( K / k )  will fail. It does not appear worth while to attempt detailed calculations 
of the behaviour in this zone given all the uncertainties. Rather it seems appropriate 
to uae physical arguments to understand what is likely to happen in such zones. It 
is well understood, see, for example, Phillips (1966, p. 57) and Bretherton & Garrett 
(1969), that in computing the changes in any characteristics of waves it is appropriate 
to integrate along paths dzldt = u + g ,  where u is the local fluid velocity and g is the 
group velocity. 

0 

There are two families of waves with frequencies 

o = U k  {g’k - A( U’ - U ) z  k2}i 

respectively. Consider the ‘plus family’ of waves. Their group velocity becomes large 
and negative in a neighbourhood of a critical zone. Thus the paths where the group 
velocity equals the swell velocity will be fixed relative to the swell and paths on either 
side of this point and close to it move towards this path. Thus the plus family of 
waves will be trapped near this station. Although the earlier calculations do not 
necessarily apply these waves will presumably absorb energy from the turbulence, so 
that the amplitude of the plus family may be expected to grow large in this trapping 
zone. The ‘minus family’ of waves behaves quite differently. Their group velocity 
becomes large and positive, so that the passage of these waves through the zone is 
accelerated and they enter the zone where the Kelvin-Helmholtz instability is 
initiated. 

Once the minus family is in the unstable zone it is reasonable to infer from the 
theory in $ 3  that the turbulent pressure fluctuations will play little further role in 
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the growth of the short waves. Then provided that it remains valid to neglect the spatial 
derivatives (1  1)  reduces to 

(KV)2d2B/df12- t - {~( f l ) -~2}B = 0. 

It is reasonable to assume that there is a sufficient level of disturbance at fl  = fll to 
initiate the Kelvin-Helmholtz instability immediately. In  the unstable zone 

A( U' - U)' k2 

is of the same order as gk, and as V2 is equal to gk, the growth rate in terms of the 
dimensionless variable fl  is O [ ( k / K ) t ] ,  which is about 102. Thus only a very small 
initial value and a narrow zone of instability on the crest would seem necessary in 
order that short waves originating in the minus family should be strongly excited 
near the crests. The above growth rate is so large that one can scarcely justify the 
neglect of spatial derivatives in the deduction of (1  1). But in the observations the 
short waves were seen to be breaking throughout the zone where there was intense 
short-wave activity. This would suggest that the extent of excitation is the result of 
a balance between the energy transfer from the mean wind and that lost owing to 
breaking. In  such circumstances it would not appear to be useful to seek a modification 
of (13) to include the neglected spatial derivatives without at the same time including 
some representation of breaking. 

In  the zone of instability the swell merely sweeps past the growing short waves and 
one is thus interested in knowing what is the appropriate behaviour of the solutions 
of (10) for fl  > fll. A complete discussion would need to include appropriate group- 
velocity effects near the stability boundary, breaking and feed from the turbulence 
for fl  near f fll. This looks impossible and so it' seemed appropriate to work with (13) 
together with the initial condition that it is the minus family of waves which enter 
the unstable zone. The question is thus reduced to finding the behaviour of a solution 
of (1  3) in the region fl  > fll which behaves largely like 

for < - El. Methods of doing this are described in Heading (1962) but care is necessary 
in translating his results to the present problem. For Heading is concerned with wave 
reflexion problems where there is energy conservation in the waves, whereas here 
the waves are deriving energy from the wind and wave reflexion is not acceptable for 
it would imply that for fl  < - f l l  the short waves would be running ahead of the swell. 
However Heading's connexion formula can be combined to give the appropriate 
result. When fl  > - fll the above solution has two parts one of which grows exponentially 
and the other of which decays exponentially and can be expected to be negligibly 
small when fl  is near fll. The exponentially large solution connects with a solution 
whose wave propagation behaviour is given by 

and this has a group velocity which is large and negative. Thus the waves which have 
grown exponentially as the crest has swept past will be trapped on its rear face close 
to the point where they have become stable. The qualitative explanation of the 
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observed confinement of the short-wave activity to zones close to the crest is thus 
satisfactory. 

5. Conclusions 
There are no solid predictions in the theory, as it has been developed, which could 

be subjected to critical testing by comparison with either experiment or observation. 
Nevertheless the author believes that the general qualitative explanation of the 
observations suggests that the basic hypothesis, that dynamic coupling between the 
wind and the surface waves may be important, is at least worthy of further investiga- 
tion. Certainly none of the features of the observed localization of the short waves 
near the crests of the swell are easily explained from the local dynamics normally 
assumed to apply for short waves. What needs to be establishedis whether the processes 
considered here are in fact sufficiently powerful to give rise to sufficient energy 
transfer. In  order to do this there are improvements of the theory which i t  would 
be essential to achieve. 

By far the most serious failing of the present model is the persistent use of potential- 
flow theory to compute the dynamic coupling. A more realistic calculation must 
allow for the very significant shear in any wind near the surface of the ocean. It is 
obvious that the fact that the wind velocity is reduced close to the surface will lead 
to a smaller coupling coefficient than that predicted using potential theory. Whether 
this reduction would be so great as to render impossible the mechanisms considered 
here must remain a matter of speculation. The author is inclined to the belief that 
the observed phenomena suggest that the mechanisms are not rendered ineffective. 
To test this he proposes to calculate a dispersion relation for surface waves more 
appropriate for shear flows. If such a relation can be obtained and there is evidence 
of Kelvin-Helmholtz type instability or a close approach thereto it would seem 
appropriate then to attempt a more careful analysis of the interaction with the swell. 

There is one further feature of the trapping of short waves near the crests of a swell 
in an opposing wind which calls for comment. The energy of the waves derives from 
the wind and when breaking occurs some of this energy may be dissipated. But the 
wind is also supplying momentum to the waves in the direction of the wind. This 
momentum is not lost in the breaking process but must be redistributed in the sub- 
sequent fluid motion. When it is recognized that there are similar momentum sources 
located in zones about the crests of a swell one sees that there is a spatial periodicity. 
Hence one would expect that a not inconsiderable fraction of the momentum would 
be redistributed with the spatial periodicity of the swell, i.e. as waves like the swell. 
But as the momentum is opposed to that of the swell one would expect the spatially 
periodic distribution of momentum sources moving with the swell to act so as to 
reduce the swell. The observed phenomenon may thus play an important role in the 
action of strong opposing winds in the attentuation of a heavy swell. 
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